等差数列所有公式大全(等差数列公式大全)

:暂无数据 2025-06-19 12:40:08 0
今天给各位分享等差数列公式大全的知识,其中也会对等差数列公式大全进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录

等差数列公式大全

一、
等差数列
  如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。
  等差数列的通项公式为:an=a1n+(n-1)d
(1)
  前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2
(2)
  以上n均属于正整数。
  从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。
  在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。
  且任意两项am,an的关系为:an=am+(n-m)d
  它可以看作等差数列广义的通项公式。
  从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
  若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。
  和=(首项+末项)×项数÷2
  项数=(末项-首项)÷公差+1
  首项=2和÷项数-末项
  末项=2和÷项数-首项
  末项=首项+(项数-1)×公差
  等差数列的应用:
  日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别
  时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。
  若为等差数列,且有an=m,am=n.则a(m+n)=0。
  3.等差数列的基本性质
  ⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.
  ⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.
  ⑶若、为等差数列,则{
a
±b
}与{ka
+b}(k、b为非零常数)也是等差数列.
  ⑷对任何m、n
,在等差数列中有:a
=
a
+
(n-m)d,特别地,当m
=
1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.
  ⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l
+
k
+
p
+

=
m
+
n
+
r
+

(两边的自然数个数相等),那么当为等差数列时,有:a
+
a
+
a
+

=
a
+
a
+
a
+


  ⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(
k为取出项数之差).
  ⑺如果是等差数列,公差为d,那么,a
,a
,…,a
、a
也是等差数列,其公差为-d;在等差数列中,a
-a
=
a
-a
=
md
.(其中m、k、
)
  ⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.
  ⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.
  ⑽设a
1,a
2,a
3为等差数列中的三项,且a1
与a2
,a
2与a
3的项距差之比
=
d(
d≠-1),则2a2
=
a1+a3.

关于等差数列所有的公式!要详细!

前n项和公式为:Sn=na1+n(n-1)d/2或Sn=(a1+an)n/2
  若m+n=p+q则:存在am+an=ap+aq
  若m+n=2p则:am+an=2ap
  以上n均为正整数
  文字翻译
  第n项的值an=首项+(项数-1)×公差
  前n项的和Sn=(首项+末项)×项数÷2
  公差d=(an-a1)÷(n-1)
  项数=(末项-首项)÷公差+1
  数列为奇数项时,前n项的和=中间项×项数
  数列为偶数项,求首尾项相
等差数列的通项公式为:an=a1+(n-1)d
(1)
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2
(2)
以上n均属于正整数。
等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。
任意两项am,an的关系为:an=am+(n-m)d
从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
末项=首项+(项数-1)×公差
加,用他的和除以2
  等差中项公式2an+1=an+an+2其中{an}是等差数列

等差数列公式是什么

等差数列的通项公式为:“an=a1+(n-1)*d”(n:表示项数,d:表示公差,a1:表示首项),等差数列的前n项和公式为:“Sn=a1*n+/2”。注意其中的n都为整数。

等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。

扩展资料:

等差数列的基本性质:

1、若等差数列Sp=q,Sq=p,则Sp+q=-p-q,并且有ap=q,aq=p则ap+q=0。

2、在等差数列中,S = a,S=b(n》m),则S=(a-b)。

3、记等差数列的前n项和为S。若a》0,公差d《0,则当a≥0且an+1≤0时,S 最大、若a《0,公差d》0,则当a≤0且an+1≥0时,S 最小。

4、数列为等差数列的重要条件是:数列的前n项和S可以写成S=an*an+bn的形式(其中a、b为常数)。

5、若数列为等差数列,则Sn、S2n-Sn、S3n-S2n…仍然成等差数列,公差为n*n*d。

在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和,特别的,若项数为奇数,还等于中间项的2倍。

参考资料来源:百度百科-等差数列

等差数列相关的公式都有哪些

等差数列的通项公式为:an=a1+(n-1)d
  或an=am+(n-m)d
  前n项和公式为:sn=na1+n(n-1)d/2或sn=(a1+an)n/2
  若m+n=p+q则:存在am+an=ap+aq
  若m+n=2p则:am+an=2ap
  以上n均为正整数
  文字翻译
  第n项的值=首项+(项数-1)×公差
  前n项的和=(首项+末项)×项数÷2
  公差=后项-前项

等差数列所有公式大全

等差数列是常见的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列公式大全

等差数列公式

等列公式:an=a1+(n-1)d(n为正整数)

S1为首项,an为第n项的通项公式,d为公差。

前n项和公式为:Sn=na1+n(n-1)d/2(n为正整数)

Sn=n(a1+an)/2 注:n为正整数

若n、m、p、q均为正整数,

若m+n=p+q时,则:存在am+an=ap+aq

若m+n=2p时,则:am+an=2ap

若A、B、C均为正整数,B为中项,B=(A+C)/2

也可推导得Sn=na1+nd(n-1)/2

等差数列公式都有哪些

等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
等差数列基本公式:

末项=首项+(项数-1)×公差

项数=(末项-首项)÷公差+1

首项=末项-(项数-1)×公差

和=(首项+末项)×项数÷2

通项公式
等差数列的通项公式为:an=a1+(n-1)d (1)
前n项和公式
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2)
以上n均属于正整数.
推论
1.从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.
2.从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
3.若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.
若m+n=2p,则am+an=2ap
4.其他推论
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
末项=首项+(项数-1)×公差
推论3证明
若m,n,p,q∈N*,且m+n=p+q,则有若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq
如am+an=a1+(m-1)d+a1+(n-1)d
=2a1+(m+n-2)d
同理得,
ap+aq=2a1+(p+q-2)d
又因为
m+n=p+q ;
a1,d均为常数
所以
若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq
注:1.常数列不一定成立
2.m,p,q,n大于等于自然数
等差中项
在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数.
且任意两项am,an的关系为:an=am+(n-m)d
它可以看作等差数列广义的通项公式.

等差数列的公式

  1. 等差数列基本公式: 末项=首项+(项数-1)*公差 项数=(末项-首项)÷公差+1 首项=末项-(项数-1)*公差 和=(首项+末项)*项数÷2 末项:最后一位数 首项:第一位数 项数:一共有几位数 和:求一共数的总和。

  2. Sn=na(n+1)/2 n为奇数
    sn=n/2(A n/2+A n/2 +1) n为偶数

  3. 等差数列如果有奇数项,那么和就等于中间一项乘以项数,如果有偶数项,和就等于中间两项和乘以项数的一半,这就是中项求和。

  4. 公差为d的等差数列{an},当n为奇数是时,等差中项为一项,即等差中项等于首尾两项和的二分之一,也等于总和Sn除以项数n。将求和公式代入即可。当n为偶数时,等差中项为中间两项,这两项的和等于首尾两项和,也等于二倍的总和除以项数n.

等差数列的几个公式是什么

等差数列的通项公式为:an=a1+(n-1)d (1)
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2)
以上n均属于正整数.
等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数.
任意两项am,an的关系为:an=am+(n-m)d
从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
末项=首项+(项数-1)×公差

等差数列公式大全的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于等差数列公式大全、等差数列公式大全的信息别忘了在本站进行查找哦。
本文编辑:admin

更多文章:


感恩父亲节的句子(求一些感恩父亲节的句子啊)

感恩父亲节的句子(求一些感恩父亲节的句子啊)

大家好,感恩父亲节的句子相信很多的网友都不是很明白,包括求一些感恩父亲节的句子啊也是一样,不过没有关系,接下来就来为大家分享关于感恩父亲节的句子和求一些感恩父亲节的句子啊的一些知识点,大家可以关注收藏,免得下次来找不到哦,下面我们开始吧!

34岁了遴选到中央部委去不去(遴选上了可以不去吗)

34岁了遴选到中央部委去不去(遴选上了可以不去吗)

本篇文章给大家谈谈34岁了遴选到中央部委去不去,以及遴选上了可以不去吗对应的知识点,文章可能有点长,但是希望大家可以阅读完,增长自己的知识,最重要的是希望对各位有所帮助,可以解决了您的问题,不要忘了收藏本站喔。

北京疫情最新情况(北京疫情多久可以恢复正常生活,工作秩序你怎么看)

北京疫情最新情况(北京疫情多久可以恢复正常生活,工作秩序你怎么看)

各位老铁们,大家好,今天由我来为大家分享北京疫情最新情况,以及北京疫情多久可以恢复正常生活,工作秩序你怎么看的相关问题知识,希望对大家有所帮助。如果可以帮助到大家,还望关注收藏下本站,您的支持是我们最大的动力,谢谢大家了哈,下面我们开始吧!

护师考试时间(初级护师考试时间)

护师考试时间(初级护师考试时间)

本篇文章给大家谈谈护师考试时间,以及初级护师考试时间对应的知识点,文章可能有点长,但是希望大家可以阅读完,增长自己的知识,最重要的是希望对各位有所帮助,可以解决了您的问题,不要忘了收藏本站喔。

在职研究生太难考了(在职研究生考试难吗)

在职研究生太难考了(在职研究生考试难吗)

大家好,在职研究生太难考了相信很多的网友都不是很明白,包括在职研究生考试难吗也是一样,不过没有关系,接下来就来为大家分享关于在职研究生太难考了和在职研究生考试难吗的一些知识点,大家可以关注收藏,免得下次来找不到哦,下面我们开始吧!

浙江有哪些主流媒体?浙江预约挂号信誉积分怎么查

浙江有哪些主流媒体?浙江预约挂号信誉积分怎么查

今天给各位分享浙江有哪些主流媒体的知识,其中也会对浙江有哪些主流媒体进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

北师珠 停止招生(北师珠 停止招生 2021停止招生是真的吗)

北师珠 停止招生(北师珠 停止招生 2021停止招生是真的吗)

本篇文章给大家谈谈北师珠 停止招生,以及北师珠 停止招生 2021停止招生是真的吗对应的知识点,文章可能有点长,但是希望大家可以阅读完,增长自己的知识,最重要的是希望对各位有所帮助,可以解决了您的问题,不要忘了收藏本站喔。

输入手机号查物流单号(怎么样用手机号码查询快递单号)

输入手机号查物流单号(怎么样用手机号码查询快递单号)

大家好,关于输入手机号查物流单号很多朋友都还不太明白,不过没关系,因为今天小编就来为大家分享关于怎么样用手机号码查询快递单号的知识点,相信应该可以解决大家的一些困惑和问题,如果碰巧可以解决您的问题,还望关注下本站哦,希望对各位有所帮助!

会理县人民政府(会理县属于哪个市)

会理县人民政府(会理县属于哪个市)

大家好,今天小编来为大家解答以下的问题,关于会理县人民政府,会理县属于哪个市这个很多人还不知道,现在让我们一起来看看吧!

一建合格分数及标准(一级建筑师考试科目合格标准)

一建合格分数及标准(一级建筑师考试科目合格标准)

各位老铁们,大家好,今天由我来为大家分享一建合格分数及标准,以及一级建筑师考试科目合格标准的相关问题知识,希望对大家有所帮助。如果可以帮助到大家,还望关注收藏下本站,您的支持是我们最大的动力,谢谢大家了哈,下面我们开始吧!

最近更新

热门文章

积雨辋川庄作(积雨辋川庄作 译文)
2025-06-22 14:00:14 浏览:1
标签列表